

[車両の運動と制御]

生産技術研究所 次世代モビリティ研究センター (ITSセンター)

Advanced Mobility Research Center

専門分野 ●制御動力学

機械・生体系部門

http://www.nozomi.iis.u-tokyo.ac.jp/

サスティナブル・モビリティの実現のために,先進制御工学,マルチボディ・ダイナミクス, 生体心理学などを適用したビークル研究に取り組んでいる

1.車両・インフラ・人間系の動特性と状態検出

鉄道の曲線通過性能向上,車両異常・脱線予兆検知,車輪/レールおよびタイヤ/路面の接触力学, ドライバ特性,脳計測,準静電界センシング,パーソナルモビリティ・ビークル, 乗降位置可変型ホーム柵,ビッグデータを用いた機械学習

2.社会受容性・快適性に関する研究

エコシステム, 社会受容性の評価, 定量評価手法, 通勤電車の座席配置, ミニバンのシートアレンジ, エコライドのキャビンデザイン

3.ビークルの運動解析と制御

マルチボディダイナミクスによる鉄道車両・自動車・パーソナルモビリティ等のモデリングと運動解析, セルフパワードアクティブ制御の車両・船舶への応用, エレベータの防振制御, 磁気浮上システム

4. ITS(高度道路交通システム)プロジェクト

サスティナブルITSプロジェクト,隊列走行プロジェクト・自動運転プロジェクト,広島ASVプロジェクト,車車間通信,駐車場ITSプロジェクト

5.モーション・シミュレータを用いた研究

複合現実感交通実験スペースの構築, HMI, 鉄道車両の乗り心地評価, 模型車両実験プラットフォーム

6.先進モビリティ研究のための設備構築

ドライビングシミュレータ, 千葉実験所交通実験施設(軌道試験線, 実証走行試験路, 交通信号機)

次世代モビリティ研究センター (ITSセンター)

Advanced Mobility Research Center (ITS Center)

安心·安全,環境低負荷· 低炭素社会,快適·健康

Safety and Security, Low Emission, Comfort and Health

研究・開発と社会還元, 人材開発, ビジネス創出

R&D and Social Contribution, Human Resource Development, Business Creation インフラー ビークル Human – Infrastructure – Vehicle

Fusion of Various Fields

Vehicle 産官学民連携

分野融合

モード融合

Mode Fusion

Cooperation: Industry-Government-Academia-Citizen 機械・制御, 土木・交通, 情報・ 通信の専門分野が融合

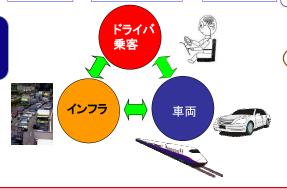
> Fusion of Mechanical, Control, Civil, Traffic, Information, Communication, Electric Engineering, etc.

ITS化自動車交通, LRTや エコライドなどの軌道系公共交通, パーソナルモビリティ

Intelligent Road Traffic,Trackbased Public Transport (LRT, Eco-Ride), Personal Mobility Vehicle ●ITS(Intelligent Transport Systems)とは、様々な技術を融合させ、より良い社会の実現を目指した最先端交通システムである.

●ITSセンターは,産官との連携をいっそう促進して社会ニーズを理解するとともに、業として自立できるITSを社会に展開している.

主要沿革


- ◆2003.4 当時の国際・産学共同研究センター(CCR)にて産 学官連携プロジェクト「サスティナブルITS」(後に「サスティナブル ITSの展開」)が発足
- ◆2005.3 生産技術研究所に「先進モビリティ連携研究センター」(ITSセンター)を設立(センター長:池内克史教授)
- ◆2009.4 先進モビリティ連携研究センターが生産技術研究 所の正式な附属研究施設(全学公認)となり、先進モビリティ研 究センター(ITSセンター)に改称(センター長:桑原雅夫教授)
- ペーション (Tig C) / (T

センターのミッション

人・インフラ・ビークル 🛨 分野融合 🛨 産学官民連携 🛨 モード融合

地域ITSセンター (オペレーション) 現センターの 要素技術融合 産官学による 社会制度研究

省エネルギー・低環境負荷 安全・安心 快適・健康 防災・街づくり

◆自動運転による次世代交通システム研究

◆ビッグデータ時代におけるモビリティ社会

のデザイン研究

地域実装

↓ インフラ再構築 社会システム ・制度設計

社会的変革を伴うモビリティ社会の創造 社会実装の新学術分野構築

研究活動

- ●「自動運転」による次世代交通システム研究
- ビッグデータ時代におけるモビリティ社会のデザイン研究
- 公共交通も含めた総合的なモビリティデザイン技術開発

研究と開発

ツールの開発・展開

ハードウエア

ソフトウェア

人間モデル

車両モデル

交通モデル

シナリオ

交通・車両研究の展開

ヒューマンインターフ ェイス

車両技術 要素技術開発

運行制御

実環境との比較

主な活動(産学共同研究・地域連携)

エネルギーITS研究プロジェクト 自動運転・隊列走行(内閣府SIP) 柏ITS実証実験 EV/ITSプロジェクト(長崎県) 東北復興モビリティ・エネルギーマネジメントプロジェクト(東北・石巻市) ASVプロジェクト(広島県) 協調ITSサービス 複合現実感交通実験スペースによる交通安全・交通円滑化

教育•人材育成•社会還元

- ●I T Sセミナー: 中央のみならず地域のニーズに 即したITSを普及促進させるため, 各地の研究機 関と共同のセミナーを年3回程度開催している.
- ●講座・講義: 一般向けには「社会人のための専門講座」を年1回, 学生向けには年2コマの授業を 開講座」を年1回, 学生向けには年2コマの授業を 開講し, 人材の育成を目指している.
- ●特別研究会: 産官学の各方面から講師を招き、 最新の話題提供と懇談を通して講師と参加者との 活発な意見交換を行っている(概ね月1回開催).

国際連携

車両・インフラ・人間系の動特性と状態検出

社会受容性・快適性に関する研究

Study on social acceptability and comfort for transportation systems

エコシステムを考慮した社会受容性の評価

エコシステムとは

本来は「生態系」の意味。経済やIT業界において、複数の企業や登場人物、 モノが有機的に結びつき、循環しながら広く共存共栄していく仕組み

自動運転での事例

自動運転を取り巻く環境

近年、環境対策や交通安全対策、新たな産業創 出などの実現のため、自動運転に関心が高まって おり、戦略的イノベーション創造プログラム(SIP)で は国家施策として自動走行システムが推進されて いる。

現在では、技術的な発展やそれに伴う法令の見 直しも進んでおり、実用化のフェーズに入っていると 言える。

自動運転には、右図のように様々な機関・事業が 関わっている。(図1)

図1. 自動運転を取り巻く環境

隊列走行実現に向けたエコシステム

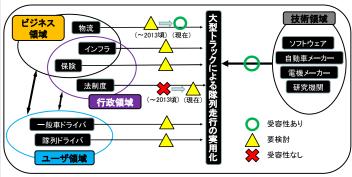


図2. 自動運転実現にむけたエコシステムの概略図

自動運転の具体的な技 術として隊列走行を例に あげ、実現にむけたエコシ ステムを左に示した。(図2) エコシステムの観点から 考えると、隊列走行の実 用化には、技術領域の確 立のみならず、ビジネスや ユーザといった領域から の受容性確保が必要条件 である。つまり、左図にお いて、

へき

に変えてい く事が求められている。

図4. 実験の様子

快適性の評価

人間行動指標による快適性の定量的評価

快適性の工学的応用に関する研究グループを 立ち上げ、主観的・定性的な快適性の概念を定 量的に取り扱う車内空間レイアウトの快適性定量 評価手法を開発して、鉄軌道・自動車・新交通シ ステムに適用してきた。

研究グループでは、産学連携型シンポジウムの乗り心をフェータの開発 エコライドキャビンのデザイン 開催を通して、最新情報の共有にも努めている。

【「快適性研究会シンポジウム」の開催】

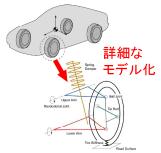
応用例

通勤鉄道車両の座席配置提案

ミニバンのシートアレンジ検討

快適性の工学的応用に関する 研究グループ

須田義大教授 振動・制御【代表】 加藤信介教授 空調 滿渕邦彦教授 生体 坂井康一准教授 交通 坂本慎一准教授 音響 古賀蓍章准教授 心理(宇都宮大)

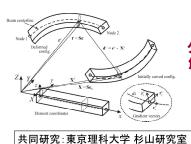

中野公彦准教授 生体 田淵義彦研究員 照明 平沢隆之助教 HMI 河野賢司特任研究員 計測

ビークルのマルチボディダイナミイクス解析

■リアルタイムシミュレーションの ドライビングシミュレータへの応用

マルチボディ車両モデル

共同研究:東京理科大学 杉山


研究室•川崎重工業株式会社

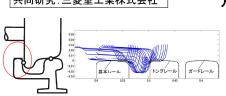
リアルタイムシミュレーションにて DSを作動

柔軟マルチボディダイナミクスに 基づくタイヤのダイナミクス解析

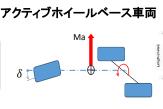
大変形曲がり梁要素の提案

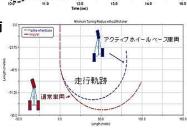
タイヤの ダイナミクス 解析に適用

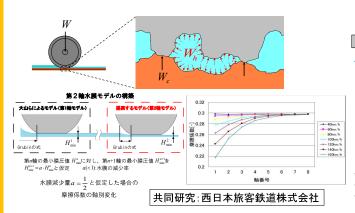
接地時の 振動モード

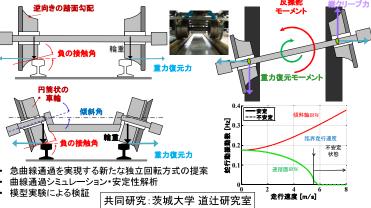


鉄道車両の分岐器通過時の 走行シミュレーションと車


レール多点接触解析




超小型モビリティ車両の運動解析


ジャイロを搭載する車体傾斜車両 共同研究:エクォス・リサーチ 入力トルク 出力トルク ジャイロ

摩擦係数の各軸変化を 考慮した車両運動解析

須田研究室 ITS・自動運転プロジェクト

ITS: Intelligent Transportation Systems

(高度道路交通システム)

仮想実験評価ツールの開発

情報通信技術による

"環境低負荷·低炭素社会"

"安全•安心"

"快適・健康"

の追求

ユニバーサルDS

D3simDS

自動運転技術の実用化検討 技術開発

エネルギーITSプロジェクト

社会実装手法の検討

柏ITSプロジェクト 協力: 柏ITS推進協議会

(車間距離4m)

大型トラックの自動隊列走行

自専道におけるFS 協力:宇部興産(株)

新エネルギー・産業技術総合開発機構(NEDO) エネルギーITS推進事業「自動運転・隊列走行に向けた研究開発」



■ ITS R&R 実験フィールド

駐車場ITSプロジェクト

- 駐車操作 -

路面勾配による車両誘導 エコシステムの評価

大型車両DS

試験線

千葉実験所柏機能移転(2017年4月)

公共交通へのITS実装の検討 車車間通信と自動運転

効率的な駐車場レイアウト インフラ設備を活用した自動運転

交通安全環境研究所、マツダ (株)、広島電鉄(株)との共同 研究、広島地区ITS公道実証 実験連絡協議会への参画

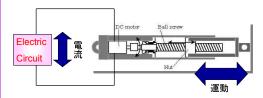
広島における世界初の路面電車-自動車間 通信型ASVデモ(2013年10月公道実証実験) - 路面電車―バス間通信の公道実験(2016年度)

🔜 柏市公共交通連携アプリ

柏駅(柏ITS推進協議会)における実証実験(2013年度)・模擬駅 共同研究:柏市役所、東日本旅客鉄道(株) 実験(2016年度) -スト(株)、阪東自動車(株)

JR東日本アプリ内での表示

東京(東京駅、武蔵小金井駅)における実証実験(2015年度) 鉄道・バス運行情報の共有とアプリ・デジタルサイネージ表示

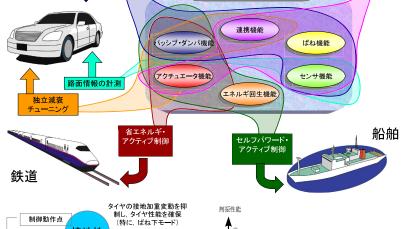


セルフパワード・アクティブサスペンション

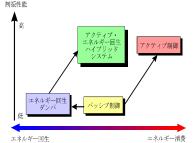
自動車

■電磁サスペンション

サスペンションにおいてメカトロニックスと融合し、 回路に流れる電流を制御することによって、 さまざまな機能実現することができる。


自動車

試作機をもちいた実車実験

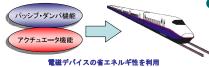


~8Hzまでの車体振動 (特に4~8Hz)を制振 制御動作点 (特に、ばね下モード) 乗り心地 接地性 粗い路面の接地性を エネルギーを使って 良くしたい状況では 乗り心地を良くしたい 状況では バッテリ容量が 少ない状況では

電磁デバイスの

機能の融合

試作機をもちいた実車実験

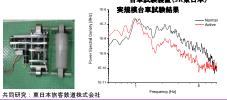

共同研究:KYB

乗り心地重視固定

80 km/h

•バッテリ容量 20mAh (通常乗用車55Ah) 乗り心地特性 (A路面) 路面入力時刻歴 White was the same of the same エネルギ消費 接地性特性 (B路面) 乗り心地重視特性 接地性重視 /

1000m


鉄道用電磁アクチュエータ 新幹線台車を用いた実規模台 車試験を実施

鉄道

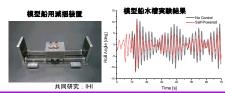
平均数ワットの消費電力で 車体左右動揺を低減

台車試験装置(JR東日本)

沿舶 パッシブ・ダンパ機能 アクチュエータ機能 エネルギ回生機能

码間[s]

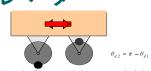
大型観測調査船の1/36スケールモ ル(1万トンクラスを用いた水理模型


波のエネルギーを回収しながら、 Sea State 5 の波浪状況で揺れを4

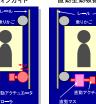
•ISO A~C相当路面を

初期充電状態100%

80km/hで走行



大型車


空車と積車で重量変動が大きい大型車において、 車両における上下動とねじれを制御し 操安性向上及び車両一体感の向上

共同研究: 日野自動車、KYB

初期値を180° ずらし、反対方向に同一の回転速度で回転 上下方向の力は打ち消しあい。水平方向のみの制御力を 発生させることが可能

- ストローク制限がない 直動変換機構が必要ない 小型化の可能性 共同研究:日立製作所

先進モビリティ研究のための設備構築

駒場リサーチキャンパス ■

連携研究棟地下実験室

<u>ドライビングシミュレータ</u>

サスペンション・コントロール・フュ ジョン評価装置

D棟地下

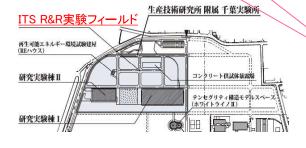
路面・タイヤ走行模擬試験装置

ドライビングシミュレータ

千葉実験所 (柏キャンパス)

大型トラック対応

ライビングシミュレータ



スケールモデル走行実験装置

ITS R&R実験フィールド

試験用 交通信号機

千葉試験線 2.0

研究体制

URL: http://www.nozomi.iis.u-tokyo.ac.jp/ E-mail: infosuda@iis.u-tokyo.ac.jp facebook: https://www.facebook.com/sudalab

研究室メンバー

須田義大 教授

生産技術研究所

次世代モビリティ研究センター 教授・センター長

千葉実験所長

機械 生体系部門

大学院工学系研究科機械工学専攻

大学院情報学環・学際情報学府先端表現情報学コース

産官学共同研究・地域連携

次世代モビリティ研究センター (ITSセンター)

ITSセンターでは、交通工学、車両工学、情報工学などを柱とする ITS推進のための分野融合研究により、ITSの研究開発、人材育成、 地域展開、国際協力等、幅広く活動しています。

地域連携

研究成果を社会還元するために積極的に地域と連携し、様々な研 究プロジェクトを行っています。

東北復興次世代エネルギ ITS実証実験モデル都 一研究開発プロジェクト 市(柏プロジェクト)

広島ITS公道

職員(7人)

助教	平沢 隆之	秘書	足立 菜摘
特任助教	林 世彬	秘書	中里 志緒
特任助教	杉町 敏之	秘書	堀川 千晶
特任研究員	河野 賢司		

研究室学生(15人)

D3	田尾 光規(1, 社会人)
D1	江崎 雄也(M, 社会人)
D1	加藤 紀彦(M, 社会人)
M2	鄭 用鉉(M)
M2	安芸 隼人(M)
M2	菅 瞭介(M)
M2	國行 翔哉(M)

Γ	М1	萘 鶴璟(M)
Г	M1	李 世豪(M)
Г	M1	磯崎 稜太(M)
Г	М1	漆原 堂樹(1)
Г	M1	大黒 智史(M)
Г	М1	木田 侑(M)
Г	М1	田中 大貴(1)
Г	M1	董 隽婵(M)

M:東京大学 大学院 工学系研究科 機械工学専攻 Ⅰ.東京大学 大学院 情報学環・学際情報学府 先端表現情報学コース

研究理念(研究室綱領)

七箇条

- 1. 研究者としての倫理を持ち、社会正義に努めること
- 2. 畏れず侮らずの精神で自主的な挑戦と謙虚さを持ち合わせること
- 3. 礼儀と信念をもって行動すること
- 4. 研究企画にあたり、仁義と道義をもって進めること
- 5. 研究にあたり、独創性を常に考え、速やかに行動をすること
- 6. 研究遂行にあたり、智をもって真実を探求すること
- 7. 研究成果の公表は、信義を重んじ、学術的な評価を得てから社会 貢献に努めること

国家プロジェクトの推進(官学連携)

関連省庁と連携して、国家プロジェクトへの参画を行っています。

2の7日 ・自動走行システム(SIP) ・自動走行システムに必要な車車間通信・路車間通信技術の開発(運営委員長) ※自動売行ングアム」の安々サードの本庫 経済産業名 スマートモビリティシステム研究開発・実証事業・ 有議者会議 (委員) ・経済産業名・国土交通省 自動売行ビジネス検討会(委員)

須田研究室

●国土交通省

- 交通政策審議会 陸上交通分判会 鉄道部会 (WG委員)

- 交通政策審議会 陸上交通分判会 鉄道部会 (WG委員)

- 大連安全的電車(SWE建委員会 (運長)

- 企業安全的電車(SWE建委員会 (運長)

- 自動車基金的電車(SWE建委員会 (運長)

- 自動車基金的電車(SWE (委員長)

- 国際安全委員会 (電子)

- 日本等術会議 (銀序会員 (委員長)

- (公財) 鉄道総合技術研究所 (理事)

- (公財) 動車軽減動員(日財政センター運営委員会 (委員長)

- (一財) 自動車軽減動員を理事)

- (一財) 自動車軽減動長(理事)

- (一社) 日本鉄道建甲両援機技術協会 (顧問)

- (一社) 日本鉄道建甲両援機技術協会 (顧問)

- (一社) 日本鉄道建甲両援機技術協会 (顧問)

- (一社) 日本鉄道建甲面援機技術協会 (顧問)

- (一社) 日本鉄道建甲両援機技術協会 (顧問)

- (一社) 日本鉄道建州流受理事)

● (一社) 地下鉄協会 リニアメトロ研究委員会 (委員長)● (特非) ITS Japan (理事)

民間企業と共同研究(産学連携)

自動車業界、鉄道業界、インフラ業界、電気メーカーなど分野をまた いて様々な分野において多くの企業と共同研究を行っております。 過去6年間では、65件の共同研究を行いました(2017年3月末時点).

特別研究会(RC)(産学連携)

産学連携の下で特定 の課題を対象とした情 報交換,調查,研究企 画および研究活動を推 進するための特別研究 会を設置しています

代表幹事 RC24 ITSに関する研究懇談会 大口敬 RC59 オーガニック・ビークルダイナミクス 須田義大 RC66 駐車場ITSに関する特別研究会 大口敬 RC68 次世代モビリティ研究会 須田義大

研究拠点

駒場リサーチキャンパス

所在地: 東京都目黒区駒場4丁目6番1号

東京大学生産技術研究所 千葉実験所

牽

地

域

所在地:千葉県柏市柏の葉5-1-5

東京大学フューチャーセンター 柏の葉キャンパス駅前 サテライト

所在地: 千葉県柏市若柴178-4-4

